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A Diffusion Preccess and Its Application to Detecting
a Change in the Drift of Brownian Motion

Moashe Pollak
Hebrew University of Jerusalem
a=d
David Siegmund
Stanford University

1. Introduction.

Consider a Brownian motion process ¥/'(t), 0 < t < oo, which during the time interval
[0.v] has drift 0 and during (v, co) has drift g > 0, where v < oo and i are unknown

“%3 soou as

parameterz. We zeck a stopping mle T wiich “detects” the change point i
possible.” For example, W(t) may represent the cumulative output of an iadnstrial process,
which is under control so long as the average output is 0, but which may go out of contrc! znd
then must be corrected as soon as possible. Other domains of application are to maintaining : R

quality of repeatcd assays (Wilson, et al., 1979) and surveillance of birth records for a

possible increase of genetic malformaticns (e.g. Weatherali and Haskey, i476). OGRS

Let P, denote probability when the change cccurs at time v (v < 0o}, [Th~ depiadence

on u is suppressed. When it srems desirable to emphasize this dependencs. we shall write

P,,. Note that P, = Pyy.) A stopping rule T to detect the change poirt should Lave
large value for E(T), i.e. if no change occurs, the expected time until one i3 “detected”
should be large. Subject to E(T) being large, a good detection rule suould in sonie sense
have small values of E,(T — v | T > v}, i.e. the time after a change occurs until it is

detected should be small. Some common detection rules (including those consid-red in this

paper) satisfy sup, E,(T — v | T > v) = E¢(T). in which case a detection cule can to some S le
exteut be cvaluated in terms of its Average Run Lengths: E.(7'), which should b lorme, e

and Ey(T), which should be small.




One possible solution to the detection problem is given by the so-called cusum tests pro-
posed by Page (1954). For a systematic discussion of these procedures, see van Dobben de
Bruyn (1568). An outstanding contributicn to the substantial literature on cusum proceszes
is Lorden (1971), who shows that they are asymptotically optimal when £.,(7) is infinitely

large.

Shiryayev (1963) and Roberts (1066) independently proposed the same competitor to
cusum tests. Recently Pollzk (1984) has proven an optimality property for the Shiryayev-
Roberts rule (in discrete time - see Appendix A for a brief discuszion of this result in the
present setting) which seems considerably stronger than Lorden’s asy:mptotic optimality of

cusum stopping rules.

- - The purpose of the present paper is to make a quantitative comparison of the Shiry ‘yev-
Roberts and Page procedures. We do this in the context of continuous time in order to use
the machinery of diffusion processes to perform explicitly certain calculations. which seem
impossible in discrete time. {See, however, Pollak, 1983, who makes considerable progicss
on the evaluation of average run lengths in discrete time)) Althcugh the continuous time
results are not especially good approzimations to the corresponding quantities in discrete
time, they provide very useful comparative information on which to base selection of a

stopping nile.

The paper is organized as fcilows. The Chiryayev-Roterts process is dcﬁx.‘.m} Hi-Seetion
%, and shown to be a novel diffusion process with some surprising properties. We also spec-
ify more precisely the basis for our corparison of the two procedures and give the results of
some elementary calculations. These developments continue in Secton 3, which contain?( an
asymptotic evaluation,of E,(T —~ v | T > v) when v and Ex(T) are large. In Seesiend we
define a modification of our basic procedure and give an asymptotic evaluation of its averé.ge
run length. Numerical comparisons and a discussica of their siznificance are vonfn%ned'.};'x.
Section §. Scme open problems are mentioned briefly in Section 6. The reader whose prin-
cipal interest is in our conclusions may wish to read Section 2 (through Propesition 1) and
tken skip directly to Sections 5 and 6, before returning to the derivations. Our concinsions

are roughly these. In simple situations where the two procedures can he divcetly comparel.
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“neither seems dramatically superior to the other. Hcwever. the Shiryayev-Roberts proce-
dure is more easily adapted to complex circumstances and consequently warrants additiona!

study. gee Section 6 for examples.)

Deﬁmtlon of the Procedures, Criteria for Comparizon,
and Elementary Operating Characteristics.

Suppose momentarily that at time v the drift of W{¢) changes from 0 to some kuown
value § > 0. Although this will rarely be true, it is possible that a procedure derived
under this hypothesis is useful even if the drift g after time v~ is unkoovmn. Also, for the
sake of motivating our stopping rule, suppose that v is itsclf a rando:n veriable which is
exponentially distributed with mean 1/A. Then the posterior probacility that there bas
been a change before time ¢ given the data until ¢ is

fo' exp(—Aa) exp[6{V(t) — W(s)} — 8°(t — s)/2]ds

P{v<t|W(s),s <t} = ~ \t)
b s < b = T (A} expi6 (W (2) — W)} — 8%(¢ — 9)/2]ds + expl 1)

Cousider the rule which stops and declares that a change has taken place when this postericr
probability exceeds some threshold ¢ for the first time. (For a particuiar lcss structure
Shiryayev, 1963, has shown that the Bayes rule has this form.) Fur A close to 0 thkis

stopping rule is approximately
¢
T = Tp = inf{t: / expl6{W(2) — W(s)} — 62(t — 5)/2\ds > B, (1)
0

which is a stopping rule proposcd by Shiryayev (1963) and Roberts (19C6).

Page’s rule is similar, but is motivated ty maximum likelihood rather than Bayesian

cousiderations. It is defined by stcpping at

= inf{t: 5[W(t) — 6¢t/2 — min{I¥V(s) — 6s8/2}) 2> ¢}. (2)

In principle we would like to choose B and ¢, s¢ that Ew(T) = F.o(7T). then compare
ET-v|T > v)and E (T -v | T > v) as functions of both v and p. In fact our
compariscus are pasicaliy between the extreme cuses v = 0 axzd v = oc. Scuactimes tiey
are asymptotic as B (hence also ¢) — co. The easiest comparisons are, of course. when we

suppose that the only possible value of p is the kypcthesized value pr = §; but we shall also
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consider other possible values. (ia Section 4 we introduce a modification of the stopping

rule (1) which is designed to deal with the case of unknown z.)

We begin with a detailed examinztion of the stopping rule (1). Let

¢
R(t) = / exp[6{W (t) — W(s)} — 62(t — 8)/2]ds. ()

Since for fixed s exp[§{W(t) — W(s)} — 62(t — 8)/2] is a Poo-martingale in t for t > s, it
foliows that R(t) — t is also a Py -martingale. Also E {R(t)} = t. An easy application of
optional stopping (Loeve, 1963, p. 534) yields

Proposition 1. E,(T) = E{R(T)} = B.

Remark: The martingale property of R(t), which yields a simple formula for E,.(T). proves
to be very useful in adapting the Shiryayev-Roberts rule (1) to deal with more complicated

problems. See Section 6 for some examples.

From (3) it is easy to see that R(t) is a Markov process with stationary transition
probabilities (as long as the drift of W{t) does not change). It follows from Ito's formula

that for all 4 the Py, stochastic differential of R(t) is given by
dR(t) = {1+ uSR(t)}dt + S R(t)dW (¢), (4)

where ii'(t), 0 <t < 00, is standard Brownian mction (with driit 0). Hecze under ), the

differential generator cf R(t) is given by

[ ]

Df(z) = 56%* (2) + (1+ pb2)['(z) (= >0) (5)

From (5) and standard diffusion thecry it is possible to compute the average rin lengths
Eo.4(T) in a fairly explicit form. A convenient reference for the followirg calculations is

Karlin and Taylor (1981, Chapter 15).

The scale function S,(z) of the process R(t) is determined by integrating the relatica

5,(2) = exp{2/(5%z) - (2ulog z)/6}, (6)

and the specd measure is given by

dMy(z) = dz/6%2%S,(z). (7)




~ Yl

It is easy to see that
/o (8,(1) = Su(2)}dMy(z) < oo ()
and hence 0 is an entrance boundary.
Since R(t) is a Markov process with stationary rransitions, we can consider tie pro-
cess starting from R(0) = z. When this is the case we shal]l write E* and P* tc deaote
expectation and probability. For a < z < b and R(0) = z. let N = inf{t : R(t) ¢ (a.h)}.

Then for nonnegative functions A

N 9
g, [ / h{R(z)}dt] = [ bo) Gle.vr0.Dap o), (0)
wLere
Glouyia.b) = 25,(2) - Sp(@)H5(8) = SuWI/{Su00) - Sula)} (2 € 1)
= Gy, z:a,b) (z>p).

Letting a — O, then z — 0 and using (8), (9) yields the followinz result. obtained by

Shiryayev (1963) in the special caze u = 4.
Propositicn 2. For the stopping rule T defined by (1) and for zll p
B
BaslT) = 2 [ {Su(5) = Sulu)}M (), (10)

where § and M are given by (6) and (7). In the special case p = U this becomes E(T) = 3.

in 2greement with Proposition 1. In the special case u = 5 (10) yields
[= <}
Eos(T)=26"{log A+ exp(l/A)/ (log z) exp(—z}d=. (an
A=t
where A = §2B/2. Letting B — 05 yields
Eos(T) =26"%{logA— 7+ 0(A "  log A}, (12)

where v = 5772 is Euler’s constant.

Remark: It is casy to evaluate (10) numericsally. For some piirposes nne probably obtains
more insight from a simple asymptotic expansion like (12). It is possible to obtain similar
expansions when p # 6, but the calculus and the resniting expressions are much mcre

complicated. The details are omitted.
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-' For the purpose of evaluating E (T = v | T > v) as v — oo, it will be helpful to know
the P, limiting distribution of I(t) (cf. Section 3). Since Eo{2(t)} = t. it is somewhat
f.;'?: surprising that {under P) R(t) is actually recurrent.

' Proposition 3. For any initial state R(0) =z, and for all y > 0

4

S Jim PL{R() < y} = exp(~2/57y).

:“'; Proof. Let r, = inf{t : R(t) = z}. For fixed u > z = R{0) let r denote the time of first
f

3 return to z after passing through u. Then

ES () = E5(r) + B (ra),
‘, and the right hand side may be evaluated by taking appropriate limits (¢ — 0 or # — co)
ia (9) with A = 1. The result is that
EZ (1) = 2{So(u) - So{z)} My(0, c0), {13}
which is finite by (6) and (7). Let H(¢t) = PX{R(t) < y}.
By the standard renewal argument

S t
, H(t)=Pi{r>t,R¢) <y} + [ E{t - s)P%{r € ds}.

o J0

= By (13) the renewal theorcm applies to yield

. lim H{t) = {E% (r)}-*/ Pi{r>t R(t) < p)dt

£ = (ea s [ [ rre <yl

j::_".' The numecrator can be evaluated by the same limiting process that led to (13), now with

h(z) = I(z < y), to show that

Jim H(t) = / dMy(z / / dMy(z).

[ ) Using (6) and (7) to evaluate these integrals completes the prooi.

The process Y'(¢) = 6§{W(t) ~ 6¢/2 — min{W (s) — §4/2}] which defines Page’s stoppin
rule (2) is also a diffusicn process, this time with a reflecting barrier at zero, so the same
°
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theory delivers the cverage run lengths and P limiting distributicn for this process as well.
On the other hand, the relation of (2) to the stopping rule of a sequential probability ratio
test, which was noted already by Page (1954), yields a more clementary computat'ca of
average run lengths; and the Py, limiting distribution is also easily computed by standard,

direct arguments. We summarize the relevant results ic the following propesition:

Proposition 4. Let T be defined by (2). For all p
o (T) = 2(2p — 8)*[c(2p — 6)/6 + exp{—~c(2p ~ 5)/6} - 1], (14)

where for 4 = §/2 the right hand side of (14} is defined to be (¢/§)%. Forall z > 0, y > 0,
as t — oo,

PL{Y(t) <y} — 1 —exp(-y). (15)

By Proposition 1 and (14), equating Eeo(T) with Eoo(T') means setting A = exp(—c) —
¢ ~ 1, where A = §2B/2. This can be asymptotically inverted as A -+ oo to yield ¢ =
log(A) + {log{A) + 1}/A + o(1/A). For the special case p = §, cubstitution of this relation
into (14) yields

Eos(T) = 26 *{log(A) — 1+ O(1/A)}. (16)

Comparing (12) ands (16), we see that Eo'o(f') is asymptotically smaller than Ep 5(T), but
the difference is not large enough to indicate a strong preference for Page’s procedure. For

u # 6, the procedures are compared numerically in Section 5.
3. Asymptotic Evaluvation of E.(T-v|T>v) 28 v and B — .

In this section we try to compare T and T when the time of change, v, is large and the
stopping rule has not yet signaled a change. The optimality considerations of Pollak (1984)
(see nlso Appendix A) sngzest that the Shiryayev-Roberts rule should be better than Page’s
under these conditions. Wa shall see below that this expectation is essentially correct, but

the differeuce is usually small.

A possible formulaticn is to evaiuate limy, E,(T = v | T > v) with 2 fixed. Howerver,
this seems difficult technically aud also inappropriate conceptually. In mo:t apniications

we eavision that the cost of a false alzrm is substantial; and hence, at least insofar az we

. -
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are able to make crude prior judgments about the range of v, we sheuld choose B roughly

comparable to v - or perhaps larger. Here we shall suppose that v and B are simuliancously
large, which, by virtue of the following lemma, allows us to utilize the Py, unconditional

limiting distribution of R(s) calculated in Proposition 3.
Aczain let E* (P*) denote expectation (probabilityj when R(C) = z.

Lemma 1. For any z,9.t > 0
PL{R(t) <y |T >t} > PL{R(t) < 4).

Also P {R(t) < y} = Po{R(00) < y}, where R(o0o) denotes a random variabie having the

distribution evaluated in Proposition 3. Ast and B — oo

Po{R(t} <y |T >t} — Po{R(o0) < y}.

Since this result seems potentially of wider interest than the specific technical requize-
ments of the present paper, and since our proof uses essentially none ot the structure of
R(t) beyond the fact that it is stochastically monotone, a complete proof of Lemma 1 will

be published elsewhere.

Theorem 1. Let A= §"B/2. Suppose p > 0 and B,v — oo. For p > §/2
EAT-v|T>v)={6(u-6/2)} " log A — v~ §/{2{n—-6/2)} +o(1}].

Forp=16/2
EJ T -v|T>v)=6%(logA- )+ 7%/6 +o{1)}.

For p<§/2
EJ(T-v|T>v)=1{6(6/2- p)}"‘{/l"z"”I‘(l —2uf8)—log A+ 4= (1~=2u/6)+0(2)}.

Here I’ denotes the gamma function and 4 = I'"(1) = 5772 is Euler's constant.

Proof. We start from

B
E,)(T-v|T>v)= / E; (Tp)Po{R(v)€dz 1T > v}
9

D
= E{,",,(T;,) -/0 Ef,‘_‘,(T,)Pco{R(u) €dz|T > v}.
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To compleie the proof, we first replace tae measures Poo {R(v) € dz | T > v} by their limir,
Po{R(o0) € dz} (cf. Lemma 1), and then cvaluate the resulting integrals {cf. Proposition

3 and (6), (7).

To justify replacieg the distributions P {R(v) € dz | T > v} by their lunit, it suffices
to show that g(z) = E’g‘u(T,) is uniforiely integzrable with respect to these distribntiozns.
But by Lemma 1, the distributions are stochastically smaller than their limit; and since g
is monotone increasing, it is uniformly integrable if and only if it is integrable with resnect
to the limiting distribution. It follows from Proposition 2 and some calculaticn that for
any p > 0 there exists r < 1 such that g(z) = O(z"). From Propcsition 3 we see that

™

P .{R(%) >z} ~2/6%z, s0 g is in fact integratle. Evaluation of the resulting interrals to
x } o

obtain the results stated above is sketched in Apperndix B.

An cssectially identical argument applies to Page’s procedure. (In fact, as noted
above, it is possible to abstract the essential features of Lemma 1 to cover both processes

simultaneously.) We record the final resuit as Theorem 2.

Theorem 2. For T defined by (2), as ¢ and # — o0, E,(T — v | T > v) is giver approxi-

mately by the following expressions for the respective cases (i) p 5% 6/2 and (i) p = §/2:
(i) {6{p -6/} e —1 =83/ {2n(2p — 63} + {6/(25 — 6)} exp{c(l - 2p/81} -+ o(1)},
and

(i) 6-2(c? - 2) + o(1).

If ¢ is defined by the relation A = exp(c) — ¢ — 1, so that Eo(T) = E»{7'}. the results
given in Theorem 2 are easily rewritten to be directly comparable to those of Theorem
1. For examle, E,(T - v | T > v) is asymyp:otically smaller than E (T - v | T > v) if
p# < (1-+7)"16 = 1135, but rot otherwise. The dificrences are not large if 4 > §/2. These
results explain the general conclusions of Roberts (1966), which in his case were based on

a Monte Carlo experiment.

Remark: Shiryayev (1963) cozciders the problem of “detection of destruction of a station-
ary regime,” which has some technical poiats in common with the preceding discussion, but

18 conceptually quite different. See Appendix C.

Etndadadidedencdeddl bttt bbb




4. Unknown ..

In the preceding sections we lLiave studied procedures which cre approximately optimal
under the assumption that at time v the change from u = 0 is to a known value 5 = §.
Since this assumption is never satisfied in practice. we have evaluated these procednres for
general values of u. Now we consider a gereralization of the Shiryayev-Roberts rule for the

case of unknown p.

Let G denote a probability on (G, 00). (The distribution G could be interpre‘cd as a
prior distribution for the value of p after the change at time v.) Let R;(t) be defined by

(3), where now we use a subscript to decote dependence on the value of 4. Deofine

. o0
Bt = [ Ry (e60), 17
and let
T = Tp = inf{¢ : R(t) > B} (18]

be defined as in (1), but with R in place of R. Since R,(t) — t is a Py martingale with
mean equal to 0 for every value of y, it follows that R(¢) - ¢t is also a P, martingale with

mean 0. Hence, exactly as in Proposition 1
E.(T)=B. (19)

Before turning to an evaluation of Eo,,.(f'), we note that an analogous modification of Page’s
rule was defined and studied in Pollak and Siegmund (1975). Unfortunately, however, we do
not know an approximation to the P average run length of this procedure because theoe is
no similar martingale structure. Hence we were limited then, as we are now, to examining
the Ep, average run length. In Secton § we give other examplea of processes for which a
version of the Shiryayev-Roberts rule and the P, average run length are easily obtained.

while the corresponding analogue of Page’s procedure seems much more difficult to study.

Theorem 3. Let p > 0 and suppose that in some neighborhood of 4 the micasnre 7 Lins

positive, continnous density 9. Then as B — oo

Eo,,,(T) = p"%2log B + loglog B — 1 — 7 — log{2x9%(p)} = log(2/u°) + o(1)].




The Lasic idea of tle proof of Thecrem 3 is already apparent in the arzuments of
Pollak and Siegmund (1975) or in the more general extension of Lai and Siegmuud (1979).
A completely rigorous development of the correspondirg result ia discrete time has becn
given by Pollak (1983). For the sake of completeness, we give a brief outline in Appendix
D.

By comparing Theorem 3 with Propositions 3 and 4, one sees that it is possible asymp-
touically to do as well to first order as in the case of known g = 6. For modcrate sample
sizes, the higher order terms play an important role, which is investigated numerically in

the next section.
5. Numerical Comparisons.

Tables 1 and 2 compare T given by (1) with T given by (2) for tke cases v = 0 and
v — 00, respectively. The values of B and ¢ were chosen so that Eo(T) and Ex{T) are
about 790, which secms appropriate for a variety of industrial sampling inspection schemes.
The entries in Table 1 were computed by integrating (10) numerically aud by applying (14).

For Table 2 the asymptotic results of Theorems 1 and 2 were usad.

Remark: The numerical integration in (10) can be quite time consuming. For the impor-
tant range p > 8/2 it is possible to show that By ,(T) = {6(s — £/2)} "' {log 3 + const. +
o(1)}, so it is possible to do the numerical computation for a moderate value of B and
obtain approximations for other B from this one value. Alternatively, in certain ranges one

can evaluate the integrals as infinite series to speed up the computations.

Tables 1 and 2 show that the Shiryayev-Roberts and Page rules are almost indistin-
guishable at 4 = §. For larger values of u Page’s rule does slightly better, while for smaller
valucs the Shiryayev-Roberts rule scems preferable. The greatest percentage differences are
those favoring Page’s rule when u is large and v = 0. When v — o0, the difference favoring
Page’s rule decreases while the small difference in faver of Shiryayev-Roberts remains ahont

what it is for v = 0.

Since the choice of § is to some extcut arbitrary, it is interesting to chserve that in

Tables 1 and 2 the choice § = 1/2 yields much smaller average run lengths for small g at

11
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Table 1
Coniparison of Averge Run Lengths
B Eo,u(T) Eo(T)
(B=192, §=1) (e=6,6=1)
0 792 703
.25 117 129
.50 34 36
1.0 10.8 10.0
1.5 6.4 5.5
2.0 4.5 3.8
(B=1791, §=.5) (c=405 6=.5)
0 791 791
.25 84 87
.50 32 22
1.0 14.6 115
15 9.6 71
2.0 7.3 5.2
Table 2

Comparison for Large v and B

i

Evu(T-v|T>v)

25

.50
1.0
2.0

.25

.50
1.0
2.0

(B=192, 6 =1)
111
31
8.8
3.4
(B=191, 6§ = .5)
71
24
0.8
4.4

(6°Bf2=¢"-1-¢)
124
34
9.0
3.3
(62B/2=¢"-1-¢)
76
25
9.4
4.1

12
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a reiaiively minor cost for larye p than does the choice § = 1. This suggests that one may
wish to use a smaller value of § tkan the change that one “expects” to cccur. In zome
applications, even the relatively small increase in average run leagth for large u entailed by

choosing a small § may be too costly to male this strategy seem reasonable.

Table 3 uses Theorem 3 to give comparable results for T defined by (18) with G the
distribution of the absolute value of a standard normal random variable. For valies of B
in the indicated range, the use of a mixture to define T seems gencrally inferior to the
practice of using an appropriate, fixed value of § to define either a Page or a Roberts type
rule. The situation changes for larger values of B. Some results are coataired in Tatle
4. which shows that for some inefficiency at g = 4. one can do better for extreme u by
using the mixture stopping rule 7. Sicee the stopping rule T i3 asyiiptotically first order

optimal simultaneously for all g > 0, still larger values of B will tend to favor T over T

However, this asymptotic optimality seems to tzke over so slowly as to be irrclevant for
many problems.

Table 3 T
Average Run Lengths for i Defined by (18)

o
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‘ with dG(y) = (2/7) /2 exp(~y2/2)dy, B = 792
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Table 4
Comparisons of T and 7 for larze B
B Zou(T) Eu (T
(B=5944) (c=8,6=1) (c=6.02 5=.5)

¢ 5944 £344 5039

.25 202 307 175

.50 57 64 45
1.0 16 14 17
15 8.2 75 10.3
2.0 5.2 5.1 7.4

6. Open Problems.

We believe that the evidence presented above indicates that there is no persuasive
scientific reason for preferring the Page. stopping rule to that suggested by Shiryavev and
Roberts, or vice versa. Depending on the specific context, one or tue other might be slightly
preferable; but in general the choice may be based essentially on convenicnce. In this sactica
we indicate some open problems, for which versions of the Shiryzyev-Roberts rule are more
or less obvious and can be studied by techniques similar to those developed here. Dlage's
rule, on the other hand. sevius less suited to deal with theze new problerms. The impertant
distinguishing feature of the Shiryayev-Roberts rule is the martingale propcciy utiliz. - in

Proposition 1, which scems to have no anzlogue for cusum procedures.

A particularly interesting article on the applied use of cteum stopping rules ‘3 Wilscn,
et al. (1979). In order to control the quality of radicimmunoassays. plasmzas of kuown
composition were occasionally submitted to be assayed, with tke result regarded as a normal
random variable with unknown mean and variance. The process is regarded as in coxtrnl if
the mean of this random variabie is the <nown composition and if the variance is “small.”
The stopping rule shculd detect a change (either increase or decrease) ia the mean vaiue or
an increase in the varinace. Moreover, the target vaiue for the meon is 2 known quantity;
but in the case of the variance the target is whatever can be achieved by carefi] npplicaticn

of the assaying method - hopefuly small - but there is no a priori valne which cre knows
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can be realized.

This problemn differs in three important respects {rom the very simple model described
above: (a) two-sided alternatives, (b) a multidimensional parameter space, ard (c¢) an
upknown initial parameter value. We shall give here a brief discussion of each of these

issues, but defer to a subsequent paper a more thorough investigation.

The issue of two-sided alternatives is the simplest, at least in fairly symmetric prob-
lems. The standard modification of Page’s procedure is to run twe one-sided cusum tests
simuitaneously, stopping as soon as at least one indicates that a change has occurred. Sce

van Dobben de Bruyn (1968) for a complete discussion. An appropriate modification of
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the Shiryayev-Roberts rule would be to take a mixture of processes as in Section 4, but

with the mixing measure G giving positive measure to both positive and negative values
of p. The simplest case would be the measure putting weight 1/2 on +6 and on —§. For

simple modifications of this sort, comparisons of two procedures yield essentially the saze

conclusions as in the ore-sided case.

For a multidimensional parameter space, the natural generalization of Roberts’ rule is

again to form a mixture over the parameter space as in Scction 4, and the brsic theory is

much as in the one dimensional case. To obtain a Page like process, it is possible to run Y
; simultaneous cusum procedures (Wilson, ct al., 1979) or use the method of mixtires (Pollak
and Siegmund, 1975); but we have no idea what this does to the average run length under

Py.

In many respects the most interesting variation arises wken the initial, in control,
parameter value is unknown. If the probability model exhibits the appropriate invariance

under a group of transformations, as in the case of a normal mean or variance, ore caa

SINOMEAL)
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¢ define a Page or Shiryayev-Roberts procedure in terms of a maximai invariant function cf
the data. For example, to detect the change of the drift of Brownian motion from an iritial
unknown value pg to a new value po + §, the invariant analogue of R(t) defined in (3) is

- 4

R'(t) = /o‘ expl(é (8'V (¢)/t — W(a)} — 6%a(1 — a/t)/2]ds.

- Relative to the appropriate o-ficlds the process R*(t) — t is a Px martingale. [cnce if

15




T* = inf{t: R*(t) = B}, exactly as in Proposition 1 we have that E,(T*) = B. Although

an analogous Page type procedure is easily defined, we have no idea what its P, average

run length is.

An entirely new feature of the problem of the preceding paragraph is that evaluation
of E,(T* -~ v |T* > v) only at the extreme values of ¥ = 0 and v — co is uninteresting.
If a “change” occurs at v = 0, it cannot be detected because the new value of 4 cannot be
distinguished from the initial value. If the change takes plzce after an extremely long period

of time, we have so much data to estimate g that we are effectively back in the situation

where p is known. We expect to discuss this model in a subsequent paper.
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Appendix A

We sketch here the optimality considerations of Shiryayev (1963) and Dollak (1984).

Assume that p equals either O or §.

Assuming that v has an exporential distribution with mean 1/) ard that if one stops
at t, the loss is 1 or {¢ — v} according as ¢ < v or ¢t > v, Shiryzyev (1963) chows that the

Bayes rule stops at
r(A,c) =inf[t: P{v < t|W(s), s <t} 2 b{A.c)}.

From Shiryayev’s formula for b(A, ¢) it follows that b, = limy—q (A, ¢)/A cxists aud satisfies
cexp(6/b.) f;ﬁc y~'exp(-y)dy = 1. Hence T defined by (1) is a limit of Payes rules for a
particular ¢ = ¢p.

It is possible to modify T’z slightly to make its risk essentially constaat in :* and hence
to make Tp approximately minimax. Let R'(t) denote the process E{2) started off from the
P-limiting distribution of R(s) given T3 > s as 8 — 00. Let Ty = inf{t : R'(t) > B}.
Then as B —

st:pE,,(T,', -v|Tg>v)= ingst‘x’pE.,(r —v|r>v)+o(l)
= 26"%{leg(6%B/2) - 1 — 7} + o(1),
where the icf is over all rules r with Ex(r) > Ex(T};). The first equality foliows irom

arguments similar to but much easier than those of Pcllak (1984}, Theorem 2. The secoud

is a consequence of Theorem 1 of this paper.
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Appeoendix B

Here we discuss calculation of the iutegrals involved in the proof of Theorem 1. I

sufices to evc'luate (up to terms converging to 0 as B — oo)

)
ES ,(Tp) - /0 B3, (T.)dF(2), (20)

where A/, denotes the speed measure M, normalized to be a probability (this is the I

limiting distribution of R(t)), and by (10) B3, (T:) =2 J; f: dS,{z)dM,(y). Taverting the

order of itegration in (20}, so that we integrate first with respect to M. then Mg, yinlds

B _ B Y z
[ Bumite) =2 [ (ex(-2/62B) - exp(=2j8%2)) [ ertyiniasite).

v0
The first terin on the right hand side can be recognized to equal Eg_”(Tg) exn(-2/6*),

while the second, after another iuversion in the order of integration, beccmes
B 3 /
252 / y2#/4=1) oxp(-2/5y) / 2=z 4 (21)
0 v
Putting these facts together shows that (20) equals the sum of {21) and
Eg,(Tp){1 - exp(-2/8B)}. (22)

As B — o, for any 4 > 0 Eg‘”(Ta) = o( B), so (22) is asymptotically negligtble. Hence it
remains to evaluate (21), wiich is a tedious but fairly straight{orward jcb and yiclds the

results given in TLeorem 1.

18
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Aprnendix C

Shiryayev (1963) discusses “detection of destruction of a stationary regime,” which su-

perficially resembles our Section 3. Here we attempt to irdicate some important differcuces.

In addition to our basic assumptions, Shiryayev assumes (i) when the stopping rule
(1) or {2) indicates a change, we can immediately ascertain whether a change has indeed
occuarred, restarting the process (from 0) if tkere has been no change; and (ii) this new
process (i.c. the original process, rcnewed at each false alarm) has beea running for an
extremely long time without any changepoint. so that the number of {alse alarms already
observed is becoming infinitely large. Mathematically this means that v — oo, perhaps

B — o0; but in any case »/B — co.

Shiryayev’s formulation is presumably reasonable if the cost associated with a faise
alarm is relatively small compared to the ccct of observation after the changepoint ». On
the other hand, we envision situations where the cost of a false alarm is substaatial, and, or
it is difficult to tell immediately whkether an alarm is a false one. Thus we have taken v and

B simultaneously large with no assumed relation between them.

With some reformulation, it i3 possible to bring about a partial unification of the two

viewpoints.

Suppose with Shiryayev that at each false alarm the detection process is immediately
restarted from scratch. Let 8), 5%, -- denote the tinmes of successive alarms, and let L =
L(t) = max{& : Si <t} be the number of alarms before time ¢. Then L{t) is a P-renewal
nrocess with renewal epochs S,. Suppose that we agree to measure delay in detecting a

disorder not by E,(S; — v | §1 > v) as we have in the rest of this paper, but by

L1

t 4
Ey(Sppyer - v) = /o EfS, —t| S > t)P{v - Sy, € dt}. (23)

Assuming p = 6. Skiryayev uses renewal theory to evaluate (23) as v — co aund then

cvaluates this limit as B — co. Assume now that v and B simultaneously become infiritely

large, in any relation whatever. For either of the detection rules (1) or (2), it is casy to use

the results of Theorems 1 and 2, together with the fact that the P distribution of v — S,

' 19
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becomes more diffuse as Ex(S1) — o, to show that the asymptotic evaluaticns given in
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Theorems 1 and 2 are also satisfied by the new criterion (23) for any 2 > 0.
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Appendix D

In this appendix we indicate very informally tke ideas leading to Thcorem 3. We

assume throughout that v = 0 ard write L, to denote expectation.

For the stopping rule (1) with u = §, we have

T
log B = uW(T) - uT/2 - log/ exp{—puW (s) + p2s/2}ds,
0

so by Wald’s identity
1 2 [ T 4 2
logB = 2 E,T)+ E, llog exp{—p¥(3) + p°s/2}ds| . (24)
0
As B — co, T = T3 — oo in probability, so

r 20 1
E, [log/a exp{—uW(s) + pza/Z}da] = E, [log/o exp{—ul¥(s) + u23/2}d.~1j + o(i),
(25)

and this last expectation can be evaluated cxactiy by consideration of (i2), (24). and {25).

For the stopping rule (18), some algebra yields
log B = W (F) - w1 /2 = W () - Y/ = 2 log{/(27)}
T N L. )
+ iog/ T2 T2y - W(T)/T}I/ exp{—yW (a) + y*s/2}ds dG(y)
0 0

The (rsndom) measure dG(y) = TV2p[TY2{y - W(T')/T}!4G!y) beccmes progressively

more concentrated arourd W (T)/T as B and hence & — co, and with overwhelming Dy-
probability, W (T)/T becomes concentrated around p. Hence as B — oo the cxpectation of

the final expression in (26) converges to the expectation appezring on the right hard side

: of (25), wLich can be evaluated. By Wald’s identity and some additicnal calculations we
;f:': have as B — oo )

. E,{pW(T) - p’T[2} = Su*E,(T),

o E,({W(T) ~ pTY/T] 1,

- and

. E,{log(?)} ~ log{EBu{T)} ~ log{(2log B)/u?}.

5 Substituting these results into (26) yields Thecrem 3.
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